Gegenbauer polynomials and the Fueter theorem

نویسنده

  • P. Van Lancker
چکیده

The Fueter theorem states that regular (resp. monogenic) functions in quaternionic (resp. Clifford) analysis can be constructed from holomorphic functions f(z) in the complex plane, hereby using a combination of a formal substitution and the action of an appropriate power of the Laplace operator. In this paper we interpret this theorem on the level of representation theory, as an intertwining map between certain sl(2)-modules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Appell Sets and the Fueter-Sce Mapping

It is proved, that the recently discussed Appell polynomials in Clifford algebras are the Fueter-Sce extension of the complex monomials z. Furthermore, it is shown, for which complex functions the Fueter-Sce extension and the extension method using Appell polynomials coincide.

متن کامل

Multivariate positive definite functions on spheres

In 1942 I.J. Schoenberg proved that a function is positive definite in the unit sphere if and only if this function is a positive linear combination of the Gegenbauer polynomials. In this paper we extend Schoenberg’s theorem for multivariate Gegenbauer polynomials. This extension derives new positive semidefinite constraints for the distance distribution which can be applied for spherical codes.

متن کامل

A new Extension of Gegenbauer Matrix Polynomials and Their Properties

The aim of this paper is to define and study of the Gegenbauer matrix polynomials of two variables. An explicit representation, a three-term matrix recurrence relations, differential recurrence relations and hypergeometric matrix representation for the Gegenbauer matrix polynomials of two variables are given. The Gegenbauer matrix polynomials are solutions of the matrix differential equations a...

متن کامل

Computing with Expansions in Gegenbauer Polynomials

In this work, we develop fast algorithms for computations involving finite expansions in Gegenbauer polynomials. We describe a method to convert a linear combination of Gegenbauer polynomials up to degree n into a representation in a different family of Gegenbauer polynomials with generally O(n log(1/ε)) arithmetic operations where ε is a prescribed accuracy. Special cases where source or targe...

متن کامل

A Multipole Based Treecode Using Spherical Harmonics for Potentials of the Form r-lambda

In this paper we describe an efficient algorithm for computing the potentials of the form r−λ where λ ≥ 1. This treecode algorithm uses spherical harmonics to compute multipole coefficients that are used to evaluate these potentials. The key idea in this algorithm is the use of Gegenbauer polynomials to represent r−λ in a manner analogous to the use of Legendre polynomials for the expansion of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013